. US005136708A
United States Patent [(1] Patent Number: 5,136,708
Lapourtre et al. (451 Date of Patent: Aug. 4, 1992
[54] DISTRIBUTED OFFICE AUTOMATION 4,914,583 4/1990 Weisshaar et al. 364/200
SYSTEM WITH SPECIFIC TASK 4,937,784 6/1990 Masai et al. 364/900
ASSIGNMENT AMONG WORKSTATIONS 4,941,084 7/1990 Terada et al. 364/200
4,954,945 9/1990 Inoue 364/200
[75] Inventors: Charles Lapourtre, Heeze; Gerard H. 5,031,089 7/1991 Liuetal ...cccccoovvvvviennnnn. 364/200
Rolf, Winssen, both of Netherlands FOREIGN PATENT DOCUMENTS
[73] Assignee: Oce-Nederland B.V., Venlo, . .
Netherlands 2069734A 8/1981 United Kingdom .
[21] Appl. No.: 503,536 OTHER PUBLICATIONS
. Escherle, A., et al.,, “The P3000 Office Computer Sys-
22] Filed: Apr. 3, 1990 gl X C .
[22] e pr tem,” Philips Telecommunication Review, vol. 42, No. 4,
P . 214-228 (1984).
Related U.S. Application Data pp
_ s vatecAl pplication Da Schantz, R. et al., The Architecture of the Cronus Distrib-
[63] Continuation-in-part of Ser. No. 203,744, Jun. 7, 1988, 04 Operating System, 6th International Conference on
abandaricd. Distributed Computing Systems, IEEE, pp. 250-259
[30] Foreign Application Priority Data (May 19-23, 1986).
Jun. 9, 1987 [NL] Netherlandscco............ §701330 ~ Daniels, D. et al., Real-Time Performance of a Com-
pletely Distributed Operating System, Proceedings Real--
[S1] Imt. CLS e GOG6F 15/16 Time Systems Symposium, IEEE, pp. 157-163 (Dec.
[52] US.CL oo, 395/650; 364/DIG. 1; 2-4, 1986).
364/228.3; 364/229.1; 364/229.2; 364/230.3; Hull, R, et al., Virtual Resource Ring: Technique for
. . 364/280.6; 364/281; 364/_2181'3: 32%21?'11'8 Decentralized Resource Management in Fault-Tolerant
[58] Field of Search ... 364/200 MS File, gg/zoo 91066 Distributed Computer Systems, 1IEE Proceedings, vol.
? 131, Pt. E, No. 2 (Mar. 1984).
i .
[56] Reterentes Cited Primary Examiner—Gareth D. Shaw
U.S. PATENT DOCUMENTS Assistant Examiner—Matthew C. Fagan
4,318,173 3/1982 Freedman et al. 364/200 Attorney, Agent, or Firm—Reed Smith Shaw & McClay
4,333,144 6/1982 Whiteside et al. 364/200 [57] ABSTRACT
4,413,318 11/1983 Herringtoncccecevnnnn. 364/200
4,423,414 12/1983 Bryant et al. 340/825.07 A distributed office automation system includes work-
4,430,699 2/1984 Segarraet al. ... - 364/200 stations and support stations which are interconnected
4,466.0(23 8/128‘: Segarra et al. ... ~ 364/200 yja a network and which make use of the functionality
:2837; ;;}927 ;{c’:mn;?:re; aa]]' gg:ﬁ% of one another by subcontracting tasks. Various func-
4,694,396 9/1987 Weisshaar et al. 3647200 tion modules are available in the system for numerous
4,754,395 6/1988 Weisshaar et al. 364/200 tasks and the system provides a distributed organization
4,780,821 10/1988 Crossley 364/200 structure in which it is always clear what function mod-
4,805,107 2/1989 Kieckhafer et al. - 364/200 ule is required to perform a specifc task. Each of the
32?3%2 2;%223 gusht;y 5 311' gzg% stations is provided with a coordination unit which is
,839, guchi et al. ... : !
4849877 7/1989 Bishop et al. ... 3647200 coqtmually aware of the state of the total sy]stem and
4.851.988 7/1989 Trottier et al. 364,200 which designates the required function module.
4,901,231 2/1990 Bishop et al. 364/200
4,914,570 4/1990 Peacock ...owweisiisissis 364,200 5 Claims, 6 Drawing Sheets
~, [y, [P,),
, ? ‘
] : i ‘T\v; Ko
e e
i 1 L
4]

Sheet 1 of 6 5,136,708

Aug. 4, 1992

U.S. Patent

FIG. 1

U.S. Patent Aug. 4, 1992 Sheet 2 of 6 5,136,708

A B
/21
B
24A 20A 208 248
C
[
24C o FIG. 2a
228
A B
21
[
LA 204 208 248
C
[]
He FIG. 2D
228
A B
21
2 [° =
4 AU 208 248
C
22 ¢
i FIG. Zc

20C

U.S. Patent Aug. 4, 1992 Sheet 3 of 6 5,136,708

23 A 228
A [2‘ B
< j 2 (
24 A 20A 208 24B
C
| 22¢
24C
~ FIG. 2
23A
A
@g) 1
2LA 20 A
C
) 22¢C
2t FIG.Ze
20¢
23A _
25 ~ 7 g .
A) 2[[KS. \\
al, e
\\\\,’-—’//
2 A 20A 20¢
e
™) 22 C

2 FIG.2f

U.S. Patent

BROADCAST A

"ACTIVE"
PACKET [N3p

-
y

STATION

NAME : A

["ACTIVE"PACKET
L

S PCOUNTER =1

N

=z BROADCAST
ADDRESSED

TRANSMISSION

Aug. 4, 1992 Sheet 4 of 6 5,136,708
STATIONS
| 8 CEC
(NOT)[TIMELATEST [o]0 |
| A[AcTve [acTiveMessage| £ S| CONTER
e \33
acTivEs >
NO

MAKE ENTRY FOR
A IN"ACTIVE"LIST

S.P COUNTER('ACTVE"
LISTENTRYA):=1

UPDATE ENTRY OF
A IN"ACTIVE"LIST

O

/40

DISCARD
PACKET

UPDATE_ENTRY OF
A IN"ACTIVE"LIST;
REQUEST A’S LOCAL
SERVICE LIST(I-1)

FIG. 3

39

|43

o

TRANGHIT Servicel |

PACKET (I-1) |

|

LI oL SERVICER LIS

SERVICEPACET | /| -
S.PCOUNTERCACTIVE

LOCAL LTST A = LIST.ENTRY A):= |

SPCONER=1-1] | é\“

5,136,708

U.S. Patent Aug. 4, 1992 Sheet 5 of 6
STATION A ’ STATIONS B, C, ETC.
|
|
(NOT) | TIME LATEST S.P
BROADCAST A u i L.F'S|COUNTER
'S}EA%\{(’ECTE" | s l ACTIVE|'ACTIVE "MESSAGE =\
' 1”! lllllllllllllllllllll \53
| |
52
NAME: A
"SERVICE"PACKET IN"ACI?I'JE"fIST NG
LOCAL LIST A ?

5.P COUNTER = |

Ny

zzzzzzzzz> BROADCAS |

UPDATE SYSTEM
"SERVICE" LIST;
S.P COUNTER ("ACTIVE"
LIST, ENTRY Ak=1+1

Re

FIG. &

58) f

0ISCARD
PACKET

59

U.S. Patent Aug. 4, 1992 Sheet 6 of 6 5,136,708

STATION A STATIONS B, C, ETC.

B BROADCASTS
"ACTIVE" PACKET

rmmmﬂ
NAME : B

— 60

MAKE ENTRY FOR | . MACTIVE TPACKE]
B IN"ACTIVE" LIST WS
J S.P. COUNTER =K
REQUEST SYSTEM | \51
“SERVICE" LIST OF B

TRANSMIT SYSTEM g
WSERVICEM LIST [

TAKE OVER SYSTEM| .
"oervice"LIST |

zxzrzrzdy BROADCAST

66 = ADDRESSED
TRANSMISSION

FIG. 5

5,136,708

1

DISTRIBUTED OFFICE AUTOMATION SYSTEM
WITH SPECIFIC TASK ASSIGNMENT AMONG
WORKSTATIONS

PRIOR APPLICATION

This is a continuation-in-part application of Ser. No.
07/203,744 filed Jun. 7, 1988, now abandoned.

FIELD OF INVENTION

The present invention relates to a distributed office
automation system, comprising intelligent units inter-
connected by a local network and each provided with a
processing unit and a memory, which memory contains
program modules suitable for performing a task, in
which system a unit can have tasks performed by a
module in any of the units containing that module.

BACKGROUND OF THE INVENTION

Distributed computing systems are generally well
known. .See, for example, 6th International Conference
on Distributed Computing systems, IEEE (May 19-23,
1986) pp. 250-259; Proceedings Real-Time Systems,
IEEE (Dec. 2-4, pp. 157-163; R. Hull, et al., Virtual
Resource Ring: Technique for decentralized resource man-
agement in Fault-tolerant Distributed Computer Systems.
IEEE Proc. 131 Pt. E No. 2 (Mar. 1986) and U.K. Ap-
plication 2069734A.

U.S. Pat. No. 4,530,051 discloses an organizational
scheme for a distributed multiprocessor system in
which tasks may be executed by program modules v in
different processing units. It does, however, not dis-
close the way a unit locates the program modules con-
cerned.

Also of interest is the “P3000 office computer sys-
tem” 1 Philips Telecommunication Review, Vol. 42,
No. 4, 1984, pages 214-228. This system comprises vari-
ous kinds of units, such as workstations and support
stations.

Workstations are provided with a keyboard, a display
screen and a processing unit having one or more micro-
processors. Support stations are intended to perform a
number of specialized tasks for the workstations, e.g..
providing communication with other units, a printer
and mass memories, for which purpose they also have
their own intelligence.

The units are interconnected by means of a data net-
work. In this way they can exchange data and make
joint use of specialized equipment.

A specific office activity can be regarded as a collec-
tion of sub-tasks required to be performed. To this end,
a unit has available a number of modules which perform
the sub-tasks. These modules are in fact programs
which are performed by the central microprocessor in
the unit. Not every task or sub-task can be performed in
each unit. When it is required to perform a task of this
kind, the unit can search for a connection to another
unit and instruct that unit to perform the required task.

The organization of this is controlled by the known
office automation system itself. As far as the worksta-
tion operator is concerned, it is often not relevant to
know where an order given by him is performed, pro-
vided such order is performed. To this end the units are
provided with a list of all the modules present in the
system with their address, which is the place in the
system where the module is located.

When performance of a specific task is required, the
unit searches for the associated module in its list and

10

20

25

30

40

45

50

55

60

65

2
establishes connection therewith in accordance with the
data in that list.

In this connection, problems may arise if one or more
modules in the system become inoperative; for example,
because the unit in which they are running malfunc-
tions. Problems may also arise if extra modules become
available, for example, as a result of an extra unit being
connected to the system.

There is, therefore, a need for a mechanism which
always keeps the lists of the units completely up to date,
so that the system retains maximum functionality even
in the event of a malfunction in one or more of the units,
and, in principle can be expanded at any time by con-
necting extra units. As a result of such connection, how-
ever, it is possible that more than one module intended
for a specific task to occur within the system. For such
cases there must be a clear selection mechanism which
designates one of the identical modules.

A selection mechanism for identical modules in a
distributed system is disclosed in U.S. Pat. Nos.
4,466,063 and 4,430,699. The system disclosed in these
patents comprises Local Systems (LS), connected to a
network, each of which is provided with a Systems
Interconnection Processor (SIP). An LS wanting to
subcontract a task to a resource in another LS, sends a
service request to its SIP. The SIP does not have a list
of all resources available in the entire system, although
it has one of the resources available in its own LS, and
broadcasts the service request to all other LSs.

On reception of that broadcast message, the SIPs of
all LSs check whether they have available the re-
quested resource and, if so, whether the requesting LS
is authorized to use it. In the affirmative, an SIP checks
whether the requested resource is free to handle the
service request and, if so, broadcasts an ‘“‘accept” mes-
sage, whereafter the requesting SIP transmits the task to
the accepting SIP, which transfers the task to its LS for
execution. In case the requested resource is busy, the
SIP waits until it is free again and then broadcasts its
“accept’ message.

“Accept” broadcast messages arriving after the first
one (or after the Nth one, if N resources have been
asked for in the service request) are discarded and are,
in fact, not transmitted from the moment a SIP that is
ready to accept receives the first ‘“‘accept” broadcast
message from another SIP.

In order to prevent heavily loaded LSs from being
selected, which would still increase their loading, the
SIPs delay their “accept” messages proportionally to
the loading, so that less loaded LSs will respond first
and be selected.

In case of abnormal behavior of an SIP, the other
SIPs, detecting errors in the messages of that SIP, ig-
nore further messages from that SIP until they receive
a normal message from that SIP again.

In this system, the selection of a resource is an en-
tirely autonomous process formed by the interaction
between the SIPs. The SIPs have no way of selecting a
particular resource themselves, as a SIP does not have
any information on the system (except for information
on the SIPs not functioning properly) outside its own
LS. Furthermore, if for economical or organizational
reasons a specific task should be performed by one and
the same resource in the entire system, even if there are
several identical resources available (the other re-
sources merely being reserves) the system disclosed
does not provide an appropriate selection mechanism.

5,136,708

3

Accordingly, it is an object of the invention to pro-
vide an office automation system which is easy to ex-
pand and in which local malfunctions do not affect the
operation of the complete system or result only in a
slight degradation of performance.

SUMMARY OF THE INVENTION

According to the invention this objective is attained
in a distributed office automation system by providing
each unit with a control program module for designat-
ing, for each task, the module required to perform that
task, hereinafter referred to as a ‘“‘coordinator”,

which maintains the list in the memory of that unit,

which is provided with means for determining the

loading of that unit,

which is connected to the coordinators in all other

units and constantly transmits thereto data con-
cerning the loading of that unit and the content of
the list in that unit.

The list contains selection data for all the written-in
modules, which enables the coordinator to designate a
specific module when identical modules are available in
the system. As a result, any changes in the system result-
ing from the failure or addition of modules are organiza-
tionally intercepted so that the resulting system is rela-
tively insensitive to malfunctions and can readily be
expanded.

~Another advantage of the invention is that the choice
of a module is determined distinctly, i.e., each coordina-
tor designates the same module at any specific time even
if there are identical modules available in the system.

In one embodiment of the invention the selection data
for identical modules for specific first tasks stipulates
that the task-identical module in the least loaded unit
must be selected, and the selection data for identical
modules for specific second tasks involve a predeter-
mined priority sequence. The criterion for the choice of
a module is thus determined by the nature of the task.
Some tasks are required to be performed by a specific
module for the entire system, even if there are several
identical modules available. Only when that specific
module breaks down, e.g.. because of malfunction, can
another—identical—module be designated. This desig-
nation will be effected on the basis of a predetermined
priority sequence forming part of the selection data.

In the case of tasks which are not restricted to perfor-
mance by a specific module, the selection criterion be-
tween identical modules is the loading of the units in
which the associated modules are located. As a result,
the response time of the system is kept short.

In a further embodiment of the invention, the mod-
ules themselves inform the coordinator of the unit in
which they are situated of their availability and the
selection data applicable to them. This can occur, for
example, on the start up of the system or after a mal-
function in a unit has been cleared. As a result of this
reporting procedure, the coordinator includes the asso-
ciated module in its list and transmits this change to the
other coordinators in the system.

According to a still further embodiment of the inven-
tion, when the coordinators have not received the data
from one or more other coordinators for a period longer
than a predetermined time, they do not select the mod-
ules in the units in which the other coordinators are
situated.

Consequently, the breakdown of a unit causes the
minimum possible disturbance to the operation of the
system. Tasks which were performed by modules in the

15

20

25

35

45

50

60

65

4

malfunctioning unit are automatically transferred to
modules in satisfactorily operating units. This may give
rise to problems for a task which is performed by a
specific module for the entire system, because the data
required for that task are stored in the memory of the
malfunctioning unit and therefore become inaccessible
or even disappear.

Therefore, such a module is adapted to update data in
the memory of the identical modules elsewhere in the
system corresponding to the first mentioned data, when
the latter are changed in connection with the perfor-
mance of the task.

The advantage of this is that in the event of a mal-
function of the active module the next module in the
priority sequence can immediately take over the task of
the malfunctioning module.

Other characteristics and advantages of the invention
will be apparent from the following description of pres-
ently preferred embodiments taken in reference to the
accompanying drawings. Like references denote like
parts.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagrammatic drawing of an exemplified
embodiment of a system according to the invention; and

FIGS. 2a, 2b, 2c, 2d, 2e, and 2f are diagrammatic
presentations of the operation of the system according
to the invention.

FIGS. 3, 4, and 5 show flow diagrams of the commu-
nication between the coordinators of the units in a sys-
tem according to the invention.

PRESENTLY PREFERRED EMBODIMENTS

The following embodiment relates to a distributed
system of intelligent units running under UNIX BSD
4.2 operating systems and connected to an Ethernet
local network.

Referring to FIG. 1, the illustrative system comprises
workstations 1 and 2, where office workers perform
their tasks. Workstations 1 include a processing unit
(CPU) 10, a memory 11, a display screen 3, a keyboard
4 and network interface 12, interconnected by an inter-
nal bus 13. Workstations 2 additionally have a mass
memory § of their own (magnetic disk). As shown, the
system also includes at least one support station 6 and
peripheral equipment, such as a printer 7 or a mass
memory 8. Support station 6 has a processing unit 10, a
memory 11, a mass memory 5, a network interface 12
and interfaces 14, 15 to the peripherals 8 and 7 for con-
trolling the latter.

Work stations 1 and 2 and support station 6 are inter-
connected by a local network 9 via their network inter-
faces 12. This network can also be used to connect
peripherals 7 and 8 to support station 6, but this connec-
tion can also be established directly by a separate cable
as shown in FIG. 1.

Each station 1, 2 or 6 has available program modules
with which it can perform tasks. Support station 6 has
program modules for controlling peripherals as well as
performing a number of tasks normally performed by a
workstation, e.g., in order to relieve the latter of a load.

In the UNIX environment, a running program mod-
ule is called a process and several processes may be
active simultaneously in a station. In performing its task -
a process may request assistance from another program
module (process). The requesting process is called the
“client” process and the process arranged for giving
assistance is called the “server’ process.

5,136,708

5

For such assistance, an appropriate server process
must be found and a connection must then be estab-
lished between the client and the server for exchanging
data.

Under UNIX, processes have an identifier for ad-
dressing them, which also designates the machine in
which they reside. This identifier will herein be called a
“name”. UNIX BSD provides standard Inter Process
Communication services, using TCP/IP (Transmission
Control Protocol/Internet Protocol) or UDP/IP (User
Datagram Protocol/Internet Protocol). A connection
between two processes is made using ‘“‘sockets”, i.e..
virtual bidirectional communication terminals that may
be allocated a name. A process having to communicate
with an other process creates a socket and binds a name
to it. Server processes wait for service requests, listen-
ing on their sockets. A client process in need of assist-
ance “connects” its socket to the one of an appropriate
server using the name of that server/socket and sends a
message to it. The server receives the message, per-
forms the task comprised in it and returns the result to
the client in the same way.

In the system according to the invention, a control
program is operative in each station 1, 2, 6, which is
specifically adapted to coordinate the contacts between
the processes. Each of the control programs, hereinafter
called ‘“‘coordinators”, communicates with the other
ones over the network 9 using UDP/IP protocol broad-
cast messages in order to find out the services offered on
the other stations and the loading of the other stations.
In addition, a coordinator communicates with processes
in its own station to tell them to which station to send
their requests for service. To be able to do this, a coordi-
nator maintains the following data:

the loading of its own station’s CPU.,

an “active” list of stations in the system with their

CPU loading figures;

a local “service” list of services offered in its own

station.

a system “‘service” list of services offered in the entire

system.
These are described in detail below.

1. The loading of its own station.

Under UNIX BSD 4.2, data indicating the loading of
a machine, averaged over 1, 5 and 15 minutes, are con-
stantly calculated by the kernel. The coordinator uses
the standard “w(1)” utility to find out these loading
figures.

2. The “active” list.

At more or less regular time intervals, e.g., every 10
seconds, every coordinator transmits in UDP Broadcast
packets its loading figures to the coordinators of the
other stations in the system. A packet has the following
form:

name of station sending
sort of packet: “‘active”
loading figure over 1 min.
loading figure over 5 min.
loading figure over 15 min.
s.p. counter

A station is identified by a name or identifier.

The “s.p. counter™ field contains the current value of
the “service” packet counter of the transmitting station.
This value is used to check whether the “service” list of
the receiving station is up-to-date with respect to the

5

20

30

45

50

60

65

6

services offered by the transmitting station, as will be
explained below.

The *active” list contains information on every sta-
tion in the system. It has an entry for every station,
which contains at least:

the name of the station;

whether the station is active;

the last time an “‘active” broadcast packet was re-

ceived from the station;

the latest loading figures received from the station;

the most recently received value of the ‘‘service”

packet counter of the station.

Each time a new ‘“‘active” broadcast packet arrives,
the coordinator updates the entry in its list of the station
concerned as soon as possible. If the “service” packet
counter value is not equal to the one stored in the list,
the coordinator asks the sending coordinator to retrans-
mit the last sent update of the “service” list. A more
detailed discussion of the communication between coor-
dinators is given below.

The coordinators maintain a constant watch on their
“active” lists, to find out if all stations are still active.
The time which may elapse between two consecutive
broadcasts of a station is restricted to a maximum. If a
station breaks down, then the broadcasts from its coor-
dinator cease. The other coordinators note the absence
of the broadcasts and wait for a predetermined time—-
which is, for instance, two times the maximum interval
between two broadcasts—for—new broadcast. In the
absence of the latter, they conclude that the station
concerned is out of operation or at least inaccessible,
and they change the entry of that station in their “ac-
tive” lists accordingly. As a result, each coordinator
knows which of the other stations are in operation and
knows their loading.

3. The “‘service” lists.

The local “service™ list contains information on all
services offered (i.e.. server processes waiting for a
service request) in the coordinator’s station. For every
server there is a separate entry, which contains at least:

the name of the server;

the category of the server and, if appropriate, the

priority number.
(The category of the server is discussed below.)

The system ‘“‘service” list contains information on all
services offered anywhere in the system. An entry con-
tains at least:

the name of the service;

the number of stations offering this service;

the names of the stations offering this service;

the category of the service and, if appropriate, the

priority sequence;

the last time this entry was changed.

(The category of the service is discussed below.)

Every time a server process is activated or deacti-
vated in the system, the coordinator of the station in
which that process resides updates its local “service”
list and broadcasts the updated list to the other coordi-
nators, which then update their system ‘“‘service” lists
using the new information, as does the broadcasting
coordinator itself. A broadcast packet for this purpose
has the following form:

name of station sending
sort of packet: “service”
local “‘service” list of
station sending

5,136,708

7

-continued

s.p. counter value

The s.p. (“service” packet) counter value is used to
make sure that no service packet is lost during broad-
cast, as the UDP Broadcast does not guarantee that
every packet is actually received by all stations. It is
chosen randomly when the station is booted and is in-
cremented by | immediately after a ‘“‘service” packet
has been broadcast. As the s.p. counter value is trans-
mitted with every “active” packet, every coordinator
knows the counter value of the next “service” packet.
Immediately after reception of a ‘“service” packet,
every coordinator increments the s.p. counter Value for
the transmitting station in its “‘active” list by 1 in order
to be read for receiving the next ‘“service” packet.

Coordinator Communication

The communication between coordinators is shown
in the flow sheets of FIGS. 3, 4 and 5. Actions of the
coordinator of a station A (hereinafter referred to as
“‘coordinator A") are shown at the left side of the verti-
cal broken line and those of the coordinators of other
stations B, C, etc. (hereinafter referred to as ‘‘coordina-
tor B”, “coordinator C”, etc,) at the right side of that
line. It is always assumed that stations B, C, etc. are
‘running and are aware of each other’s presence. Their
reactions to actions of station A are identical, so only
one sequence is shown at the right side. Therefore, if the
actions of coordinator B are described, the same actions
are performed by coordinators C, etc., but the latter
have been omitted for reasons on clarity.

FIG. 3 shows the event sequence following an *“ac-
tive” broadcast of station A. Station A may be running
and be known to the other stations or it may have just
been introduced into the system and still be unknown to
the other stations. Last, it may have just rebooted after
a breakdown and be known to the other coordinators,
but still labeled “inactive™ in their “active” lists.

In all cases mentioned, coordinator A broadcasts an
“active” packet 31 (step 30), which is received by coor-
dinator B. The packet has an “s p. counter” field with
the “service” packet counter value of the latest “ser-
vice” packet broadcast by coordinator A. This value is
called “I”. Coordinator B checks step 32) if station A is
in its “active” list 33, and, if so, if station A is labeled
“‘active” (step 34). If station A is known as being active,
coordinator B checks the s.p. counter value of the
packet (I) against the value in its “active” list (N) (step
35).

If I N, as it should be under normal conditions, coor-
dinator B proceeds to step 36 and updates the fields
“time latest “active‘‘message’” and “If’'s” (loading fig-
ures) of the entry of station A in its “active’ list, using
the loading figures contained in the “‘active” packet and
goes into a waiting state (37).

If I<N, indicating that the received packet is an old
one that has probably been held up somewhere in the
network coordinator B discards the message. as is not
relevant any more, (step 38) and goes into a waiting
state (39).

If I>N, indicating that “service” packet I—1 (or
even more than one previous packet, when I-N>1)
has not arrived, coordinator B requests coordinator A
to transmit the last “service” packet and updates the
entry of station A in its “active” list (step 40). Coordina-
tor A transmits the specified packet (42) (step 41) and

20

30

50

55

8

coordinator B updates its system *‘service” list with the
data of the “service” packet, whereafter it writes the
value I into the s.p. counter field of A’s entry in its
“active” list (step 43). Then it goes into a waiting state
(44). The communication between the coordinators A
and B described here is not by broadcast, but by an
addressed transmission, which is more reliable and loads
the communication process less. Also, the transmission
of the “service” packet in step 41 does not change the
s.p. counter value.

In the case of station A having just been introduced
into the system, its name is not in the “active” list of
coordinator B. The letter now makes a new entry in its
“active” list to accommodate station A (step 45), and
fills in the s.p. counter value (step 46) and the “active”,
the “time latest “active‘message” and the If’s fields
from the “active’ packet received (step 36), after which
it goes into a waiting state 37.

If station A has just rebooted after a breakdown, its
name is still known to coordinator B, but it has been
labeled ““inactive” in B “active” list. At the reception of
the “active” packet of coordinator A, coordinator B
goes through steps 32 and 34 and then updates its “ac-
tive” list entry for station A by filling in s.p. counter
value “I” (step 46) and the ‘“active”, the “time latest
“active”’message’’ and the 1f’s fields according to the
“active” packet received (step 36), after which it goes
into a waiting state 37.

FIG. 4 shows the event sequence following a “ser-
vice” broadcast of station A. Although a station will,
after startup, dlways broadcast an “active” packet be-
fore it broadcasts “service” packets, it is always possible
that the initial “active” packet has got held up or lost on
the network and a “service” packet is the first to arrive.
Therefore, there are three situations in which the “ser-
vice” packet can arrive: 1) station A is running and
known to the other stations, 2) station A has just been
introduced into the system and is still unknown to the
other stations, or 3) station A has just rebooted after a
breakdown and is known to the other coordinators, but
still labeled “inactive” in their “active” lists. In all casts
it is assumed that the other stations are running and
aware of each other’s presence.

Coordinator A broadcasts a ‘“‘service’ packet 51 (step
50), which is received by coordinator B. The “s.p.
counter” value of the packet is called “I”. Coordinator
B checks (step 52) is station A is in its “‘active” (step 54).
If station A is known as being active, coordinator B
checks the s.p. counter value of the packet (I) against
the value in its “active” list (N) (step 55).

If I=N, as it should be under normal conditions,
coordinator B proceeds to step 56 and updates its sys-
tem ‘“‘service” list using the data contained in the “ser-
vice” packet. After this, coordinator B increments the
s.p. counter value of A’s entry in its “active” list by 1
and goes into a waiting state (57).

If I>N, indicating that ‘“service” packet I—1 (or
even more than one previous packet, when I—-N>1)
has not arrived, coordinator B assumes that the ‘“ser-
vice” packet just received is the most recent anyway
and uses the data contained in it to update its system
“service” list. Then coordinator B writes the s.p.
counter value of the packet, incremented by 1, into the.
s.p. counter field of A’s entry in its “active” list to pre-
vent “service” packet I—1 from erasing the more re-
cent information of packet I, would it arrive later.

If I<N, indicating that the received packet is an old
one that has probably been held up somewhere in the

5,136,708

9

network, coordinator B discards it, as is not relevant
any more, (step 58) and goes into a waiting state (59).

In the case of station A having just been introduced
into the system, its name is not in the “active” list of
coordinator B. The latter simply discards the packet, as
it programmed to accept “‘service’ packets from known
stations only, after which it goes into a waiting state
(59).

If station A has just rebooted after a breakdown, its
name is still known to coordinator B, but it has been
labeled “inactive” in B’s “‘active™ list. At the reception
of the “‘service” packet of coordinator A, coordinator B
goes through steps 52 and 54 and then simply discards
the packet as it programmed to accept “service” pack-
ets from active stations only, after which it goes into a
waiting state (59).

FIG. 5 shows the event sequence, in the case station
A has just been introduced into the system or station A
has just rebooted after a breakdown, following an “ac-
tive” broadcast of one of the running stations in the
system. The ‘“‘active” packet of coordinator B is as-
sumed to be the first one to arrive after station A gets
active. Upon the reception of this *“‘active” packet, sta-
tion A initializes as a system station and subsequently
handles all broadcasts in the way described with respect
to FIG. 3 and FIG. 4.

Coordinator B broadcasts an ‘“‘active’ packet (61) in
step 60. Upon reception of this packet, coordinator A
makes an entry for B in its “active™ list, and fills it with
the data contained in the packet (step 62). Then it trans-
mits a request to coordinator B to transmit its system
“service” list (step 63). Coordinator B does so (step 64)
and coordinator A takes the list over as its own system
“service” list (step 65), after which it goes into a waiting
state (66).

CLIENT-SERVER COMMUNICATION

To make them suitable for use in the system described
here, client and server program modules contain a set of
library routines that can be activated by the following
primitives:

the “connect™ primitive: this primitive is used by a

client process to obtain a communication link with
a certain server. It first addresses the coordinator
of the client’s station, which returns the addressing
information of that particular server. After the
server is located, the ‘‘connect” primitive estab-
lishes a “symbolic™ link (i.e.. one that is addressed
by name) between the client and the server pro-
cesses;

the “terminate” primitive: this primitive is used to

remove the communication link between the client
and server processes.

the “register”” primitive: this primitive is used by a

server process to make itself known to the coordi-
nator of its station. When a server process is acti-
vated, it reports to its coordinator, using a prepro-
gramed name and category. The coordinator re-
sponds by writing the reporting server in its local
“service” list and broadcasts the updated list to the
other coordinators. As a result, every coordinator
updates its system ‘‘service” list correspondingly.

the “deregister’ primitive: this primitive is used by a

server process to communicate to its coordinator
that it is no longer able to perform the task it is
meant for. The coordinator then updates its local
“service” list and broadcasts the latter to the other

45

50

55

60

10

coordinators. As a result, every coordinator up-
dates its system ‘‘service” list correspondingly.

In addition, every client process has functionality to
detect when a connection with a server process is bro-
ken off, e.g. by a malfunction of the station in which
that server resides, and to call the “‘connect” primitive
in order to obtain a communication link with a replac-
ing server, if any.

SERVER CATEGORY

Because the system comprises several more or less
identical stations, there will certainly be a number of
server processes with multiple instances in the system,
i.e.. there will be identical servers available. Such serv-
ers have the same preprogramed name and belong to
one of two categories, i.e.. “‘equivalent” or “substitute”.
The category is always transmitted to the coordinator
by the “register” primitive.

An “equivalent” server is intended for a task not
restricted to a specific station, e.g.. a text spelling check.
Such a task can in principle be subcontracted to any
station in the system and in case of failure of the station
in which a particular server is performing such a task,
the task may be performed once again by an identical
server in another station.

A ‘“substitute”server is intended for a task which
must be performed by one and the same server process
in the entire system, e.g.. the updating of the list with
operators access passwords. If there is more than one
server available for that task, they are counted as a
reserve. In the event that the station which contains the
server actually performing the task breaks down, one of
the reserves should take over. To this end, these servers
are given a priority number which defines a sequence
for performing the task, e.g.. by preprogramming or by
a suitable algorithm for allocating a priority number
upon registering. The substitute server processes are
always written in the ‘“‘service’ lists with their priority
number.

In the case of substitute servers controlling a data file,
such as the previously mentioned password collection,
there is an extra precaution taken. In the event that the
station containing the server actually performing the
task breaks down, the data concerned should be kept
accessible for the server process taking over. Therefore,
all the identical server processes of this kind have their
own data files in the memories of their stations, contain-
ing the same data, with the server actually performing
the task maintaining all said files, either by broadcasting
changes made to its own data file or by directly con-
necting to its substitutes and transmitting those changes.

When a client process requests a connection to a
server, its coordinator scans its system “service” list to
find out in which station or stations the concerned
server is available and of what category it is. Next, the
coordinator looks in the ‘“active” list, if the station or
stations offering the service are active and removes the
stations indicated as inactive from the selection.

If there is only one server of the name specified in the
request, the coordinator returns the addressing informa-
tion the client process needs to communicate with that
server.

If the specified server is of the “equivalent” category,.
the coordinator selects the server in the least loaded
station. To this end the coordinator calculates a loading
indication from the loading figures in its ‘“‘active” list,
e.g., using the formula

5,136,708

11

loading indication=1x 1f(15)+ 3 x If(5)+ 15 > 1f(1)

(wherein If (i)=loading figure over i minutes). The aim
of bringing in the longer term loading figures is to avoid
oscillation in the loading of a particular station.

The coordinator compares the calculated loading
indications of the active stations containing the speci-
fied server and selects the server in the station having
the lowest loading. As the time intervals between two
broadcasts of a station are rather long (e.g.. every 10
seconds, in order not to increase the loading of the
station too much), it may be preferable for the coordina-
tor to ask the stations containing the server to send their
actual loading figures first and make its selection on the
basis of the new loading figures.

If the specified server is of the “substitute” category,
the coordinator selects the server having the highest
priority according to the priority sequence in the sys-
tem ‘‘service” list.

An example of the operation of the coordinators will
now be explained with reference to FIGS. 24-2f

FIG. 2a illustrates stations A, B and C, each provided
with a coordinator 20A, 20B and 20C. The coordinators
maintain mutual- contact via the connection 21. This
connection is a “logic’” connection via network 9 (FIG.
1). Each station is further provided with an ‘“active” list
(not shown), a local “service” list (not shown) and a
system “service” list 24A, 24B, 24C.

FIG. 2b illustrates a server process 22B which reports
itself to its coordinator 20B and then is included local
“service” list of that coordinator by name and category.
In this example this server has the name TASK, belongs
to the “substitute” category and has the priority number
1. The coordinator 20B writes in the server 22B in its
system ‘“‘service” list 24B and transmits the data immedi-
ately to the other coordinators 20A and 20C which also
write in the server 22B in their system ‘‘service”

24C. The server now goes the standby position until
there is work for it.

FIG. 2c illustrates a second server process 22C which
becomes written in. This server is intended for the same
task as server 22B and therefore has the same name
TASK, and is also of the “substitute™ category and has
the priority number 2.

FIG. 24 illustrates the procedure when a client pro-
cess 23A wishes to subcontract a task to a module hav-
ing the name TASK. Process 23A asks its coordinator
20A selects, from its list 24A, server 22B having the
priority number 1. A connection 24 is then established
between client process 23A and server process 22B.
Connection 24 is again a “logic” connection via the
network 9 (FIG. 1). Server 22B then starts to perform
the task.

In the situation for example where the station con-
taining server 22B breaks down as a result of a malfunc-
tion, coordinator 20B also breaks down. Consequently,
reports on the degree of loading that coordinator 20B is
required regularly to broadcast are absent and coordi-
nators 20A and 20C conclude from this that station B is
out of operation and change the ‘“active” field in their
*“active” list into “inactive”. This is represented in FIG.
2e.

The client process 23A notes the malfunction because
it no longer receives any reply from server 22B. Process
23A again asks for a connection to a TASK server and
obtains connection 25 to the server having the priority
number 2, 22C. This is represented in FIG. 2f Since the

20

25

35

50

55

12
task had not yet been completed, it must be completely
or partially redone by
If the task commanded by client process 23A has to
be performed by a module of the *“equivalent™ category,
the course of events is largely identical, but the criterion
for selection of server 22 is not based on the loading
data of the stations which the coordinators transmit to
one another via the connection 21. Server 22 in the least
loaded station is then designated.
It will be apparent to those skilled in the art that
numerous other embodiments are possible within the
scope of the claims, e.g. systems in which the worksta-
tions are organized in groups each coordinated by a
support station. The workstations may be permanently
connected to the support station of their group and the
support stations be interconnected via the network.
What is claimed is:
1. An office automation system, comprising:
intelligent units interconnected by a local network;
each intelligent unit comprising a memory which
stores program modules for performing specific
tasks and control means; each of said control means
including
process means for executing said program modules,
means for determining data concerning loading of the
Processor means,

means for repeatedly transmitting the determined
data concerning loading of the processor means
and data identifying available ones of the program
modules together with selection data to the other
control means,

means for receiving data concerning load of proces-

sor means and data identifying available program
modules together with selection data from the
other control means,

means for maintaining in the memory data identifying

all the program modules available in the system
together with selection data based on the received
data identifying available program modules and the
received selection data and for maintaining in the
memory data concerning loading of all the proces-
sor means in the system based on the received data
concerning loading of processor means,

means for designating one of said program modules in

the system required to perform a specific task by
reference to said data identifying all the program
modules available in the system together with said
selection data and to said data concerning loading
of all the processor means, and

means for establishing a connection to the intelligent

unit in which resides said designated program mod-
ule for executing said designated program module
by the processor means of the connected intelligent
unit, thereby having the specific task performed.

2. An office automation system according to claim 1,
wherein said designating means designates in accor-
dance with the selection data one of a plurality of identi-
cal program modules for specific first tasks in accor-
dance with a predetermined priority sequence based on
the selection data, and

wherein said designating means designates one of a

plurality of identical program modules for specific
second tasks based on said data concerning loading -
of all the processor means, said designated program
module residing in the intelligent unit having the
least processor means loading among the intelligent
units in which reside all of said identical program
modules for said specific second tasks.

5,136,708

13

3. An office automation system according to claim 1
or 2, wherein the program modules, during execution
upon their becoming available, inform said control
means of the data identifying them together with selec-
tion data.

4. An office automation system according to claim 1
or 2, wherein when said control means has not received
data from at least one of the other intelligent units for a
predetermined period of time, said control means does
not designate any program modules resident in said at
least one other intelligent unit.

10

20

25

30

[9%)
wn

40

50

55

65

14

5. An office automation system according to claim 2,
wherein each memory stores data required for the pro-
gram modules in performing specific tasks, whereby the
designated program module for a specific one of said
second tasks, upon execution, maintains the data in each
memory of the intelligent units in which reside program
modules identical to said designated program module to
keep the data required for each identical program mod-
ule identical to the data required for the designated

program module.
* * * * *

